lastly, the scaling hypotheses is applied to the relationship of flood volume and duration in this paper . the flood intensity-duration-frequency form is proved based on the temporal scaling property of flood 最后,本文將標度不變性引入洪水洪量??歷時關系中,對大流域年最大洪量隨歷時變化的標度性質行了嘗試性的研究。
the scaling hypotheses is applied to the relationship of annual maximum rainfall intensity and duration . the rainfall intensity-duration-frequency form is proved based on the temporal scaling property of rainfall 由年最大平均暴雨強度隨歷時變化的標度性質推導出暴雨公式的形式,找到了暴雨公式的理論根基??暴雨在時間上分配具有自相似性的結果。
so a new method ? scale analysis method ( or called fractal analysis method ) is applied to study the flood of jialing river basin . the scaling hypotheses is applied to the relationship of annual maximum flood and drainage area . and basing on the scaling lognormal model with two parameters introduced by smith, a lognormal model with three parameters of flood is introduced to represent the scale effect of drainage area in annual flood peak distributions 在洪水區(qū)域分析中一般采用洪水指標法,但該法的基本假定與實際情況存在矛盾,因此本文采用一種新的分析方法??標度分析法(或稱為分形分析法)來研究洪峰的區(qū)域變化,將標度不變性引入年最大洪峰流量??匯流面積關系中,并將其用于嘉陵江流域的洪水,另外,本文在smith提出的具有標度性質的二參數(shù)對數(shù)正態(tài)分布模型基礎上創(chuàng)造性地提出了三參數(shù)對數(shù)正態(tài)分布模型來表征年最大洪峰流量分布中匯流面積的尺度影響。